Copied to
clipboard

G = M5(2):12C22order 128 = 27

8th semidirect product of M5(2) and C22 acting via C22/C2=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: M5(2):12C22, C23.12M4(2), D4.C8:5C2, C4oD4.3C8, C8oD4.4C4, (C2xD4).8C8, D4.7(C2xC8), Q8.7(C2xC8), (C2xQ8).8C8, (C2xC8).209D4, C8.126(C2xD4), (C2xC16):10C22, C4.14(C22xC8), C8.32(C22:C4), C4.26(C22:C8), (C2xM5(2)):11C2, (C2xC8).604C23, C8oD4.16C22, (C2xC4).25M4(2), (C2xM4(2)).32C4, M4(2).34(C2xC4), C22.7(C22:C8), C22.2(C2xM4(2)), (C22xC8).417C22, (C2xC4).25(C2xC8), (C2xC8).150(C2xC4), C4oD4.31(C2xC4), (C2xC4oD4).20C4, (C2xC8oD4).19C2, C2.27(C2xC22:C8), C4.118(C2xC22:C4), (C2xC4).445(C22xC4), (C22xC4).287(C2xC4), (C2xC4).363(C22:C4), SmallGroup(128,849)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — M5(2):12C22
C1C2C4C8C2xC8C22xC8C2xC8oD4 — M5(2):12C22
C1C2C4 — M5(2):12C22
C1C8C22xC8 — M5(2):12C22
C1C2C2C2C2C4C4C2xC8 — M5(2):12C22

Generators and relations for M5(2):12C22
 G = < a,b,c,d | a16=b2=c2=d2=1, bab=dad=a9, cac=a5b, cbc=a8b, bd=db, cd=dc >

Subgroups: 172 in 110 conjugacy classes, 58 normal (36 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C16, C2xC8, C2xC8, M4(2), M4(2), C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C2xC16, C2xC16, M5(2), M5(2), C22xC8, C22xC8, C2xM4(2), C2xM4(2), C8oD4, C8oD4, C2xC4oD4, D4.C8, C2xM5(2), C2xC8oD4, M5(2):12C22
Quotients: C1, C2, C4, C22, C8, C2xC4, D4, C23, C22:C4, C2xC8, M4(2), C22xC4, C2xD4, C22:C8, C2xC22:C4, C22xC8, C2xM4(2), C2xC22:C8, M5(2):12C22

Smallest permutation representation of M5(2):12C22
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 27)(2 20)(3 29)(4 22)(5 31)(6 24)(7 17)(8 26)(9 19)(10 28)(11 21)(12 30)(13 23)(14 32)(15 25)(16 18)
(2 24)(4 26)(6 28)(8 30)(10 32)(12 18)(14 20)(16 22)(17 25)(19 27)(21 29)(23 31)
(2 10)(4 12)(6 14)(8 16)(18 26)(20 28)(22 30)(24 32)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,27)(2,20)(3,29)(4,22)(5,31)(6,24)(7,17)(8,26)(9,19)(10,28)(11,21)(12,30)(13,23)(14,32)(15,25)(16,18), (2,24)(4,26)(6,28)(8,30)(10,32)(12,18)(14,20)(16,22)(17,25)(19,27)(21,29)(23,31), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,27)(2,20)(3,29)(4,22)(5,31)(6,24)(7,17)(8,26)(9,19)(10,28)(11,21)(12,30)(13,23)(14,32)(15,25)(16,18), (2,24)(4,26)(6,28)(8,30)(10,32)(12,18)(14,20)(16,22)(17,25)(19,27)(21,29)(23,31), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,27),(2,20),(3,29),(4,22),(5,31),(6,24),(7,17),(8,26),(9,19),(10,28),(11,21),(12,30),(13,23),(14,32),(15,25),(16,18)], [(2,24),(4,26),(6,28),(8,30),(10,32),(12,18),(14,20),(16,22),(17,25),(19,27),(21,29),(23,31)], [(2,10),(4,12),(6,14),(8,16),(18,26),(20,28),(22,30),(24,32)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G8A8B8C8D8E···8J8K8L8M8N16A···16P
order1222222444444488888···8888816···16
size1122244112224411112···244444···4

44 irreducible representations

dim11111111112224
type+++++
imageC1C2C2C2C4C4C4C8C8C8D4M4(2)M4(2)M5(2):12C22
kernelM5(2):12C22D4.C8C2xM5(2)C2xC8oD4C2xM4(2)C8oD4C2xC4oD4C2xD4C2xQ8C4oD4C2xC8C2xC4C23C1
# reps14212424484224

Matrix representation of M5(2):12C22 in GL4(F17) generated by

00213
001415
13800
6400
,
21300
51500
00213
00515
,
16000
16100
00916
00128
,
1000
0100
00160
00016
G:=sub<GL(4,GF(17))| [0,0,13,6,0,0,8,4,2,14,0,0,13,15,0,0],[2,5,0,0,13,15,0,0,0,0,2,5,0,0,13,15],[16,16,0,0,0,1,0,0,0,0,9,12,0,0,16,8],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16] >;

M5(2):12C22 in GAP, Magma, Sage, TeX

M_5(2)\rtimes_{12}C_2^2
% in TeX

G:=Group("M5(2):12C2^2");
// GroupNames label

G:=SmallGroup(128,849);
// by ID

G=gap.SmallGroup(128,849);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,1430,1018,248,1411,102,124]);
// Polycyclic

G:=Group<a,b,c,d|a^16=b^2=c^2=d^2=1,b*a*b=d*a*d=a^9,c*a*c=a^5*b,c*b*c=a^8*b,b*d=d*b,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<